企業のカスタマーエンゲージメントと製品プロモーションといったマーケティングにソーシャルメディアなどのデジタルチャネルを活用することはもはや当たり前になっている。一方で電子メールのような「旧式」のツールは見落とされがちだ。しかし、人工知能(AI)を活用することで、メールマーケティングが有望なマーケティングツールとして見直され始めている。
すぐに反応が得られるソーシャルチャネルに比べて、メールマーケティングは購読者の新規開拓と維持が難しく、メールの開封率とクリックスルー率(CTR)が低いと考えられている。
いまのところメールマーケティングのパフォーマンスを向上させるためには、割引クーポン、件名変更、あるいは送信頻度の調整といった改善が一般的な方法だと考えられている。しかし、これらは、読者がコンテンツに興味を示すかどうかを同じ人間として推測できるはずだという考えの上に成り立っており、マーケターが望む反応を引き出すまでには、数多くの試行錯誤が必要になるだろう。
一方、AIを利用すれば、膨大なデータの中から類似顧客を見つけ出したり、既存顧客に対する理解を深めたりすることができる。さらに、綿密にセグメンテーションを行うことで、顧客の関心や行動を予測することも可能になる。そうした取り組みを通じて、メールマーケティングにおける最も厄介な課題のいくつかを解決することができるのだ。
企業からのメールニュースに読者が興味を示さないのには理由がある。デジタルビジネスのコンサルティング会社であるEconsultancyによれば、2017年にアジア太平洋圏においてメールの宛先以外のコンテンツをパーソナライズしたマーケターはわずか21%で、そのうち76%が メールマーケティングのパーソナライゼーションの強化に意欲的だったという。さらに、受信者名と他のデータポイントを両方利用することで、開封率が2倍になる可能性があることも報告されている。現在、AIにはユーザーがサイト内で閲覧するコンテンツをはじめ、あらゆるユーザーデータの分析が可能であり、最も頻繁に使用されるキーワードを抽出してオーディエンスの最大の関心を特定し、セグメンテーション予測を作成できる。
これらの実用的な判断材料を得られれば、オーディエンスの好みやニーズにより近いコンテンツの開発や特典の提供が可能になる。AIはキーワードをいくらでも特定できるため、多くのタッチポイントでオーディエンスとエンゲージメントを図れるようになる。そのうえ、過去のキャンペーンデータを基に新キャンペーンに高い反応を示しそうなオーディエンスを予測し、それに応じてメール機能をカスタマイズすることもできる。
例えば、台湾の某大手オンライン出版社は、すべての読者に同じメールを発信していたが、高い開封率やCTRを得られなかった。コンテンツや件名に関連性や面白味がないために、受信者の関心を引けなかったためである。この出版社は、AIを使ったアプローチを導入し、 ディープラーニングを活用して読者のプロファイルとオンライン行動を結び付け、年齢や関心といった主要属性を基にプロファイルのセグメンテーションを実施した。このプロセスを通じて、正確な読者層別メールリストを作成し、適切なマーケティングコンテンツを適用できるようになると、開封率が42%、CTRが107%も増加した。
目的に合致したAIモデルを使うことで、ユーザーのオンライン行動から収集したデータを分析して、既存顧客に「類似」する顧客を見つけ出し、ターゲットを絞った広告開発やリーチの取り組みにも役立てられる。このプロセスは、既存顧客のデモグラフィックデータの分析から着手する。使用するデータは、ウェブサイト、キャンペーン、アプリ、CRM、ソフトウェア、アプリケーション・プログラミング・インターフェースの統合などから収集できる。
AI搭載プラットフォームがそれらの情報と付加的な情報源を特定の規則に従った対応付けや割り当てを行い、見込み客を探し当てる。この貴重なデータセットを利用すれば、不特定多数を対象とするコンバージョンレートの低いメール配信が減り、メールを正確なターゲティングツールとして使用できるようになる。
AI搭載のプラットフォームは、行動パターンに基づいて、離脱する可能性がある購読者を特定する。購読者が離脱の兆しとなる行動を取った場合でも、クーポンなどのとどまる理由を与えれば、ユーザー離れを防ぐことができるだろう。こうした予兆を察知した際は、先ほど紹介した台湾の某大手オンライン出版社は次のようなリエンゲージメント戦略を計画し、実行に移した。