在資訊龐雜的數位世界裡,品牌商無不積極地向顧客提供個人化的內容與服務來創造獨特價值。若想促使更多顧客轉換,能設計出符合訪客興趣的應用程式或網站內容即是強而有力行銷策略。
根據Accenture Interactive所發佈的2019個人化行銷調查報告,超過九成的顧客偏好在有為他們提供切身相關優惠或推薦的網站上購買商品。
傳統的個人化行銷如何操作?
若僅靠人力,目前能做到的個人化行銷是透過搜尋並分析既有客戶,逐漸地從中拼湊出顧客輪廓,並根據輪廓建立更客製化的設計。只要能夠從網站或應用程式中收集愈多顧客行為數據,就能藉此設計出更貼心的個人化內容。
雖然透過上述方式可提供現有顧客更加個人化的體驗,然而,收集與分析數據將耗費太多時間,同時,根據最近的一份研究顯示:84%的轉換發生在顧客首次來訪時,這表示你可能會因為無法在顧客首次到訪時提供個人化體驗,而失去寶貴的成交機會。
其實,就算顧客是首次來訪,仍然可以依據某些數據來發展個人化內容設計。傳統來說,偵測IP位址、定位資料、使用裝置、以及流量來源,都可作為行銷人判斷顧客期待的依據。
舉例來說,利用定位資料篩選器,可以幫助服裝品牌根據IP、定位資料、當地語言與季節主題以展示最相關的商品給首次來訪網站的顧客。上述所提及的自有資料也可幫助你在首訪顧客瀏覽熱銷商品時推播限時優惠或附送贈品等等。
如何運用人工智慧優化個人化行銷體驗?
然而,這些傳統方法仍然有其限制,畢竟這些數據僅是根據站內或應用程式內的使用者行為數據分析而來。這些數據無法辨識同一位消費者在不同裝置上的行為,因此無法提供顧客跨裝置的個人化行銷體驗。
有了AI技術的輔助後,你將能夠掌握顧客在站外的興趣與使用行為,這代表你能夠在他們造訪你的網站之前就預先洞悉他們。因此,你將擁有更多依據以設計更佳的個人化行銷內容,奪得先機。
知己知彼,百戰百勝。雖然我們無法期待每個首訪顧客都能順利成交,但透過運用人工智慧行銷自動化工具,你可以如先知般為首訪顧客打造高度個人化的專屬體驗,有效提升轉換成效。